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ABSTRACT 
Exploration of a design space is the first step in identifying 

sets of high-performing solutions to complex engineering 

problems. For this purpose, Bayesian network classifiers 

(BNCs) have been shown to be effective for mapping regions of 

interest in the design space, even when those regions of interest 

exhibit complex topologies. However, identifying sets of 

desirable solutions can be difficult with a BNC when 

attempting to map a space where high-performance designs are 

spread sparsely among a disproportionately large number of 

low-performance designs, resulting in an imbalanced classifier. 

In this paper, a method is presented that utilizes probabilities of 

class membership for known training points, combined with 

interpolation between those points, to generate synthetic high-

performance points in a design space. By adding synthetic 

design points into the BNC training set, a designer can 

rebalance an imbalanced classifier and improve classification 

accuracy throughout the space. For demonstration, this 

approach is applied to an acoustics metamaterial design 

problem with a sparse design space characterized by a 

combination of discrete and continuous design variables.  

INTRODUCTION 
Design exploration is often an important part of 

simulation-based design.  It entails acquiring new knowledge of 

a design space, especially the regions of the design space that 

are likely to lead to high-performance solutions.  Exploration is 

often coupled with or followed by a design exploitation phase 

in which the emphasis is on improving or optimizing known 

solutions.  Design exploration can be related closely to set-

based design, in which the objective is to identify sets of 

feasible, high-performance designs rather than a single, optimal 

design.  

Set-based design exploration entails mapping the most 

promising regions of the design space.  A simple approach is to 

use intervals to capture the space, but intervals are limited in 

terms of accuracy and flexibility to capture complex, arbitrarily 

shaped regions of a design space [1-5]. Exhaustive sampling 

techniques have also been utilized for this purpose [6], but they 

can lead to prohibitive levels of computational expense. More 

recently, classification algorithms from machine learning have 

been applied for this purpose [7-11]. In previous work, 

Seepersad and coauthors have demonstrated how Bayesian 

network classifiers can be utilized and enhanced for various 

materials design applications [11-13] and as a basis for 

enhancing stochastic search for a variety of mixed 

discrete/continuous design problems [9], [14].  

In this paper, the focus is on design exploration of a special 

class of mixed discrete/continuous design problems for which 

the promising design space is exceptionally sparse.  In these 

cases, it is challenging to identify promising regions of the 

design space and even more difficult to leverage that 

information to further expand and improve the performance of 

the sparse set of candidate designs.  In this paper, we address 

this challenge by building upon previous work in the 

application of Bayesian network classifiers for mapping 

promising regions of the design space and augment it with a 

synthetic oversampling technique to improve the accuracy of 

the classifier for these sparse design spaces.  

The next section provides an overview of Bayesian 

network classifiers and their implementation for design spaces 

with continuous and discrete design variables along with an 

introduction to the challenges posed by sparse design spaces. 

Then, a synthetic oversampling method is described for 

addressing these challenges, followed by application to a 

materials design problem focused on materials with acoustic 

non-reciprocity. 

BAYESIAN NETWORK CLASSIFIERS FOR DESIGN 
SPACE EXPLORATION AND MAPPING  

Bayesian network classifiers have been shown to be useful 

in design exploration because they can be used to partition a 

design space according to the ability of candidate designs to 

meet specified performance requirements  [10].  Effectively, 
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they enable inverse mappings of regions of interest in a design 

space.  Furthermore, their roots in Bayesian statistics enable 

incorporation of prior expert knowledge and support for 

sequential sampling [41]. When dealing with continuous or 

mixed continuous/discrete design variables, kernel-based 

Bayesian network classifiers (KBNs) are appropriate and are 

the basis of the work presented here.  

KBNs use Bayesian decision theory to determine the 

probability that a design belongs to a defined class, according 

to the formulation of Bayes rule in Eqn. 1.   

 

 
𝑃(𝑐𝑙|𝑥⃑) =

𝑃(𝑥⃑|𝑐𝑙)𝑃(𝑐𝑙)

𝑃(𝑥⃑)
=  

𝑃(𝑥⃑|𝑐𝑙)𝑃(𝑐𝑙)

∑ 𝑃(𝑥⃑|𝑐𝑘)𝑃(𝑐𝑘)
2
𝑘=1

 (1) 

 

In this formulation the prior probability of each class is 

represented by 𝑃(𝑐𝑙), the class conditional probability for a 

given set of D design variables 𝑥 ⃗⃗⃗  = [𝑥1, 𝑥2, … , 𝑥𝐷] is 

represented by 𝑃(𝑥⃑|𝑐𝑙), and the probability that the design 

belongs to a designated class is called the posterior probability 

of class membership and is represented by  𝑃(𝑐𝑙|𝑥⃑). Priors can 

be formulated in many different ways depending on the 

expected distributions of each class, but a simple counting 

prior, as shown in Eqn. 2, is often sufficient. 𝑁𝑙 represents the 

number of samples in class l, while 𝑁 is the total number of 

samples. 

 

 
𝑃(𝑐𝑙) ≅

𝑁𝑙 + 1

𝑁 + 2
 (2) 

 

To determine the class conditional probability, 𝑃(𝑥⃑|𝑐𝑙), a 

kernel density estimate (KDE) is constructed.  Kernel functions 

are centered on each candidate design point, and those 

functions are aggregated into the KDE. Although many kernel 

functions can be used for constructing KDEs, the Gaussian 

normal kernel is implemented in this work.  Using a Gaussian 

KDE, the class conditional probability can be evaluated with 

Eqn. 3.   
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Here, each Gaussian kernel is assigned a D-dimensional 

standard deviation 𝜎 . 𝑥𝑖 represents the design point in indicial 

notation and 𝑥̂𝑖
𝑗
 is the data point at the center of the 𝑗𝑡ℎ kernel 

in the 𝑖𝑡ℎ dimension. The standard deviation sets the width of 

each kernel and assigning the value that yields the best 

performing KDE is the topic of much research [15-18], but in 

this work, it is treated as a heuristic parameter and tuned to 

maximize classification accuracy for the problem at hand. 

Although the variables in this discussion are described as 

continuous variables, discrete variables can be accommodated 

straightforwardly by substituting frequency-based distributions 

for the continuous distributions that define the class-conditional 

probabilities.   

By applying Bayes’ rule to the class conditional 

probabilities, the posterior probability of class membership is 

calculated separately for each class of interest.  For example, in 

a binary classification scheme (e.g. high-performance, 𝑐1, 

versus low-performance, 𝑐0, with respect to specified 

requirements) a design is evaluated twice to determine 𝑃(𝑐0|𝑥⃑) 

and 𝑃(𝑐1|𝑥⃑), and the candidate design is assigned to be a 

member of the class with the larger posterior probability, 

according to Eqn. 4. In some cases a designer may wish to bias 

the assignment toward a certain class based on risk or some a 

priori knowledge. These heuristic risk factors are defined as 

𝜆𝑙 ∈ [0,1] and applied as weights on the posterior (default 𝜆𝑙 =
1 ∀ 𝑙). The difference between the posterior probabilities is 

called the posterior class discriminant (PCD).  

 

𝑃𝐶𝐷 ∈ [−1,1] = 𝜆1𝑃(𝑐1|𝑥⃑) − λ0𝑃(𝑐0|𝑥⃑) 
 

                            =  
𝜆1𝑃(𝑥⃑|𝑐1)𝑃(𝑐1) − 𝜆0𝑃(𝑥⃑|𝑐0)𝑃(𝑐0)

𝑃(𝑥⃑|𝑐1)𝑃(𝑐1) + 𝑃(𝑥⃑|𝑐0)𝑃(𝑐0)
 

(4) 

 

The D-dimensional hypersurfaces along which 𝑃𝐶𝐷 = 0 

represent decision boundaries in the space. An example of 

posterior probability surfaces for a binary classification in 2D is 

shown in Figure 1. In the figure, green and red points represent 

instances belonging to different classes. The blue and red 

surfaces represent the posterior probability of their respective 

classes throughout the space. The probability of each class is 

equal (𝑃𝐶𝐷 = 0) where these surfaces intersect as represented 

by the black curves in Figure 1.  

 
Figure 1: Posterior probability surfaces over an example 2D 

design space. Each surface is generated from the sample points 

using a kernel-based Bayesian network classifier (KBN) [12]. 

The hypersurfaces along which 𝑃𝐶𝐷 = 0 are particularly 

important for accurate classification because they are the 

decision boundaries between design space regions of different 

class membership.  When the number of training points 

available for one class is much greater than for another class, 

the PCD can be skewed in favor of the dominant class, a 

condition called imbalanced classification, which is the focus of 

this paper. 
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IMBALANCED CLASSIFICATION PROBLEMS 

In many cases, analysts and designers seek to predict rare 

events based on existing data sets. Classic examples include 

identifying patients with early-stage cancer indicators from 

imaging data [19] in the medical field, identifying oil slicks 

from satellite imagery [20] or detecting instances of credit card 

fraud from a large number of legitimate transactions [21]. This 

problem is called imbalanced learning or anomaly detection in 

the machine learning community and is characterized by a 

significant class imbalance. Conventionally, the imbalanced 

learning problem is formulated as a binary classification in 

which a minority class is of particular interest and all other 

outcomes are grouped into a majority class. In the binary 

framework, a minority class instance is considered a “positive” 

P result and the majority class instance is considered a 

“negative” N outcome. With the classes defined in this way, a 

2x2 confusion matrix is a convenient way to view classification 

performance, where TP is a true positive result, FP is a false 

positive, TN is a true negative, and FN is a false negative. The 

binary confusion matrix is shown in Figure 2 below. 

  

  Predicted Class 
  P N 

T
ru

e 
C
la

ss
 P TP FN 

N FP TN 

Figure 2: Confusion matrix for binary classification 

These labels give insight into the classification task but 

more importantly serve as the basis for more informative 

evaluation metrics to make comparisons between classifiers. 

Quite a large number of evaluation metrics have been created 

for the purpose of comparing classifiers [22]. Some simple yet 

descriptive metrics include: true positive rate (TPR), false 

positive rate (FPR), false negative rate (FNR), and accuracy 

(ACC), as defined in Eqns. 5-8. 

 

 
𝑇𝑃𝑅 =  

𝑇𝑃

𝑃
= 

𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (5) 

 
𝐹𝑃𝑅 =  

𝐹𝑃

𝑁
=  

𝐹𝑃

(𝐹𝑃 + 𝑇𝑁)
 (6) 

 
𝐹𝑁𝑅 =  

𝐹𝑁

𝑃
=  

𝐹𝑁

(𝑇𝑃 + 𝐹𝑁)
= 1 − 𝑇𝑃𝑅 (7) 

 
𝐴𝐶𝐶 =  

𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁)
 (8) 

 

With a small number of minority class members used for 

training, classifiers tend to predict that all candidates belong to 

the majority class. When using a KBN, this occurs because the 

KDE for evaluating the majority class posterior probability 

overwhelms that of the minority class, resulting in diminished 

minority class regions of the design space. Since almost all 

instances are members of the majority class, the ACC will be 

very high, even if every single minority class instance is 

misclassified [23]. For this reason, the ACC is insufficient for 

evaluation of imbalanced classification tasks because 

identification of minority class instances is very important and 

misclassification can be very costly. In the cancer detection 

example introduced earlier, for example, misclassification of a 

minority class instance means that a patient with cancer is 

diagnosed as healthy. In a problem of this nature, classifier 

performance is better described by its ability to identify 

minority class instances, so TPR and FPR are more meaningful 

performance indicators for the minority class than ACC.  

Due to the challenge of imbalanced classification and its 

prevalence in machine learning tasks [20], [24-27], significant 

research has focused on improving classifier performance under 

these conditions [23], [28-33]. The two most general 

approaches are to train the classifier in a cost-sensitive manner 

and to restore balance by resampling to either decrease the 

number of majority instances or increase the number of 

minority instances in training data [23]. Resampling the training 

data set can be done in many ways including (1) gathering more 

real samples of the minority class, (2) randomly removing 

majority class samples (random undersampling), (3) informed 

undersampling of the majority class using an algorithm to 

remove samples so minimal definition of the space is lost, (4) 

removing or altering overlapping instances from the two 

classes, and (5) generating synthetic samples to bolster the 

minority class. Each method has benefits, but the generation of 

synthetic minority samples has been shown to be particularly 

powerful both in a static data set [28] and as an adaptive 

sampling tool [34]. This technique—called SMOTE for 

Synthethic Minority Oversampling TEchnique—was 

introduced in a seminal paper by Chawla et al. [28]. SMOTE 

works by performing linear interpolation along D-dimensional 

lines between each minority class instance in the design 

(feature) space and its k nearest neighbors where k can be 

adjusted based on the desired breadth of minority 

oversampling. Adaptations of the original SMOTE are 

numerous [34-37].  The strategy described in this paper builds 

on SMOTE by combining it with the PCD to enhance the 

classifier’s true positive rate (TPR).    

Imbalanced classification appears in engineering design 

tasks in which only a small number of high-performance 

designs exist within a design space that contains a 

disproportionately large number of low-performance designs. 

Imbalance is exacerbated in sparse design spaces with a mix of 

continuous and discrete variables that cannot benefit from 

gradient-based optimization techniques. In these cases, 

adapting a SMOTE approach adds capability to improve 

classifier performance and inform the exploration of sparse 

high-performance regions within the design space.  

The following section describes a novel way to generate 

synthetic samples of the minority class and, by using them to 

train a KBN, improve the accuracy of the design space 

mapping. As a result, the model is improved and class 

prediction of candidate designs becomes more accurate. This 

method is particularly advantageous in sparse and/or 
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imbalanced design spaces where the KBN model 

underestimates the size of high-performance regions in the 

design space. It uses information gained from building a KBN 

to intelligently select where to add synthetic training points in a 

design space to improve definition around decision boundaries.  

 

POSTERIOR CLASS DETERMINANT (PCD) 
INFORMED SMOTE 

In sparse design spaces, sampling is likely to lead to very 

few high-performance designs isolated locally among an 

overwhelming number of low-performance designs. In this 

case, training a kernel-based classifier yields a KDE that 

indicates a misleadingly small region of the space holds high-

performance (minority class) designs. Figure 3 shows the effect 

of a class imbalance of 50:1 in a 2D design space. In this 

example space, a region of high performance exists near the 

middle of the space, but due to sampling at low density only a 

single high-performance instance exists in the data set. The 

resulting design space mapping fails to accurately represent the 

performance regions because of the imbalance. Predictions 

based on this mapping would likely misclassify any high-

performing designs near the single high-performance training 

point because the posterior probability of class membership for 

the low-performance points dominates that of the high-

performance point(s). 

 
Figure 3: High-performance (blue) and low-performance (red) 

posterior probability surfaces over a sparse 2D design space with a 

class imbalance of 50:1. The 49 low-performance points are red; 

the single high-performance point is green.  Due to imbalance, this 

mapping suggests that a misleadingly small region of the space 

holds high-performance designs.  

To improve the overall classifier performance in a sparse, 

imbalanced design space we seek to improve the design space 

mapping near the decision boundaries (𝑃𝐶𝐷 = 0). Accordingly, 

additional high-performance training points are needed near the 

decision boundaries. As shown in Figure 4, the procedure starts 

with a sampling strategy and an initial design space mapping. 

According to a standard k-fold cross validation (CV) strategy, 

the KBN classifier is trained using a training set of candidate 

designs with known performance evaluated with a predictive 

simulation model. Then, the accuracy of the KBN is evaluated 

with a separate set of test data (also with known performance 

evaluated with the same predictive simulation model).  The 

KBN classifies the design space into high- and low-

performance regions according to performance thresholds 

specified by the designer.  If the high-performance designs are 

represented sparsely in the training data, and the TPR is 

unacceptably low, the KBN is a candidate for synthetic 

sampling.  Figure 4a illustrates a simplified 2D design space 

with one discrete variable (𝑥2) and one continuous variable (𝑥1) 

and sparse representation of high-performance designs, shown 

as green points in the figure.  This KBN is a candidate for a 

synthetic sampling procedure because its TPR is unacceptably 

low, as indicated by the substantial proportion of high-

performance points outside of the decision boundary, which is 

represented by the solid black line in Figure 4a.  

The synthetic sampling procedure operates by adding 

synthetic training points near the decision boundaries to 

improve the accuracy of the classifier.   The procedure begins 

by identifying candidate designs near a decision boundary, 

where 𝑃𝐶𝐷 = 0 according to Eqn. 5.  By specifying a PCD 

interval, the designer selects the design points that are suitable 

basis points for synthetic sampling.  In Figure 4a, the decision 

boundary (𝑃𝐶𝐷 = 0) is represented by the solid black line, and 

a small interval around the PCD (e.g., 𝑃𝐶𝐷 ∈ [−0.1, 0.1]) is 

represented by the dotted black line.  Any points within the 

PCD interval are suitable basis points for synthetic sampling.  

The size of the PCD interval determines the extent of the design 

space that is utilized for synthetic sampling. An interval of 

𝑃𝐶𝐷 ∈ [−1, 1] would encompass the entire space and an 

interval of 𝑃𝐶𝐷 ∈ [−0.1, 0.1] would cover only a small 

fraction of the total design space, for example.  

After assigning the PCD interval, which encompasses the 

basis points for synthetic sampling, the next step is to 

interpolate between the basis points.  In this case, one of the 

variables, 𝑥2, is a discrete variable, which is not amenable to 

interpolation.  Accordingly, an initial set of basis points is 

selected based on a common value for the discrete variable, 𝑥2, 

as indicated by the red box in Figure 4a.  Then, synthetic points 

are generated by interpolating between the basis points as 

shown in Figure 4b.  In Figure 4b, the performance response, 

𝑓(𝑥1), is plotted as a function of the continuous variable, 𝑥1, 

for the basis points.  The value of the continuous variable is 

adjusted to generate candidate synthetic points.  The 

performance, 𝑓(𝑥1), of the candidate synthetic points is 

evaluated by interpolation between the basis points of known 

performance.  In this case, interpolation is performed via simple 

linear interpolation between neighboring points, but any 

surrogate modeling procedure (regression, kriging, etc.) could 

be utilized to perform the interpolation.  If the interpolated 

performance of the candidate synthetic point exceeds the 

performance threshold specified by the designer for the 

purposes of classification, it is accepted as a synthetic point to 

be added to the training set, as represented by one of the green 

stars in Figure 4b.  If not, it is rejected, as represented by the 
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red X in Figure 4b.  Then, the process is repeated for all unique 

values of the discrete variable(s) until all of the basis points 

within the PCD interval have been considered. This simple 

example includes only one continuous variable, but multiple 

continuous variables can be accommodated via multivariable 

interpolation.  

As shown in Figure 5, the synthetic training data is merged 

with the original training data to form a new training data set, 

and a synthetically enhanced KBN is trained.  The accuracy of 

the synthetically enhanced KBN is evaluated with the same test 

data utilized to evaluate the accuracy of the original KBN.  If 

the accuracy is still unacceptable, more synthetic training data 

can be generated, and the process can be repeated.  

When applying this method to a design problem, it is 

good practice to select a subset of synthetic points to validate 

with the underlying simulation model. Although using 

surrogate models to interpolate between basis points is intended 

to reduce computational expense, validating a subset of 

synthetic points helps ensure the accuracy of the synthetically 

enhanced design space. The appropriate size of the validation 

subset primarily depends on the accuracy of the surrogate 

model. For example, if a linear interpolation model is used to 

generate and evaluate synthetic points that exhibit a highly 

multimodal response with few basis points, the surrogate 

prediction of the performance of the synthetic points could 

deviate significantly from the performance predicted by the 

underlying simulation model. In this case, it may be necessary 

to evaluate several of the synthetic points with the underlying 

simulation model.  A validation step is performed in the 

demonstration problem in the next section. 

 
Figure 5: Flowchart outlining the strategy of PCD informed 

SMOTE. The steps are usually executed within a CV scheme.  

DEMONSTRATION PROBLEM  
To investigate the effectiveness of the PCD informed 

SMOTE procedure, we consider the problem of identifying 

acoustic non-reciprocity in simple metamaterials. A medium 

exhibiting acoustic non-reciprocity responds differently to 

identical sound waves when they are radiated into the medium 

from different directions. Differences in response caused by 

Figure 4: (a) A 2D design space with one discrete (𝒙𝟐) and one continuous variable (𝒙𝟏). The high-performance region is bounded by the 

black decision boundary derived from the KBN.  As shown, several high-performance (green) points are incorrectly classified as low-

performance (outside of the decision boundary), contributing to an undesirably low TPR, so a PCD interval, indicated by the dashed lines, 

is generated to identify basis points for synthetic sampling. (b) A linear interpolation scheme is used to generate synthetic points for the 

reduced set outlined by the red box in (a). If the interpolation indicates that the point is high performance, it is added to the training set as 

a synthetic point, as indicated by the green stars.  Otherwise, it is rejected as a candidate synthetic point, as indicated by the red X.   
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geometric and boundary effects are generally not considered to 

be examples of non-reciprocity; instead, the focus is on non-

reciprocity caused by the composition of the medium itself. 

One kind of acoustic non-reciprocity is called Willis 

coupling (also referred to as bianisotropy) [38]. Analogous to 

magnetoelectric coupling in electromagnetism [39], Willis 

coupling is caused by microscale effects in a medium resulting 

in macroscopic field coupling between the momentum and 

strain constitutive relations. The coupled constitutive relations 

are: 

 

 𝜇 =  𝜌 ∙ 𝑢⃗ − 𝜂 𝑝 

𝜖 = 𝛾 ∙ 𝑢⃗ − 𝛽𝑝 
(9) 

with coupling vectors  

 𝜂 = 𝜒 𝑜 + 𝑖𝜒 𝑒 

𝛾 = 𝜒 𝑜 − 𝑖𝜒 𝑒 
(10) 

where 

 

𝜇  : momentum density 

𝑢⃗  : particle velocity 

𝜖 : volume strain 

𝑝 : acoustic pressure 

𝜌  : anisotropic mass density 

𝛽 : adiabatic compressibility 

𝜒 𝑜 : odd coupling 

𝜒 𝑒 : even coupling 

 

 

A way to demonstrate this coupling is with acoustic 

metamaterials called Willis materials. Work by Sieck, Alu, and 

Haberman showed that composites can be homogenized to 

quantify Willis coupling on the macroscopic level [40]. The 

approach they presented motivates the designer to identify a set 

of composites that exhibit non-negligible coupling and to seek 

instances of strong coupling under various conditions. This 

problem is too broad to approach comprehensively, but by 

limiting the scope of the investigation, it becomes tractable. 

The problem is well suited to set-based design and 

classification of high- and low- performance designs. 

Additionally, it provides a challenging case of class imbalance 

due to the nearly infinite number of candidate designs and the 

relatively small fraction of those designs that meet reasonable 

high-performance thresholds.  

For simplicity, we consider only a 1D model of a 

composite made from periodic unit cells. Since the composite is 

1D, the waves are assumed to be plane waves. Figure 6 shows 

the configuration of the unit cells under plane wave radiation in 

the 𝑥̂ direction.  The configuration of potential unit cells is 

limited to one general design consisting of a two-layer 

inhomogeneity in a background of liquid water. The 

composition of the layers constituting the inhomogeneity is 

limited to common materials with well understood bulk 

material properties. In particular, density, 𝜌, sound speed, 𝑐, and 

compressibility, 𝛽, in the layers and the background water are 

the important factors affecting wave propagation through the 

unit cell. By convention the properties of the background fluid 

are labeled 𝜌0, 𝑐0, and 𝛽0. Each inhomogeneity includes two 

layers, and each layer is assumed to have identical thickness 

because thickness has less effect on the wave propagation than 

the existence of boundaries between materials. For a unit cell of 

length 𝐿 and an inhomogeneity of length 𝑙, the volume fraction 

is 𝑉𝐹 =  
𝑙

𝐿
.  

 

 
Figure 6: Plane wave propagation along the x-axis in a 1D periodic 

medium composed of repeating multi-layer inhomogeneities of 

length l in unit cells of length L with a background of liquid water 

with properties 𝝆𝟎, 𝒄𝟎, and 𝜷𝟎  [40]. 

 Measurement of the Willis coupling terms 𝜒 𝑒and 𝜒 𝑜, 

which enter into the constitutive relationships in Eqn. 10, 

requires a model that captures the non-reciprocal response of 

the unit cell.  Plane waves are radiated into the unit cell from 

each direction separately, and the pressure response is measured 

at the boundaries. Since the homogenization procedure is 

dynamic, the frequency of the plane waves affects the material 

behavior and therefore must be taken into account. For the 

homogenization, frequency is incorporated as an element of the 

wavenumber in the background material and normalized to the 

unit cell length. The normalized wavenumber takes the 

form 𝑘0𝐿 =
2𝜋𝑓𝐿

𝑐0
 . For quantifying the Willis coupling, we use 

the same normalization of the coupling terms as Sieck, Alu, and 

Haberman [40], namely 𝑐𝑜𝜒
𝑒/𝑘0𝐿 and 𝑐𝑜𝜒

𝑜/𝑘0𝐿𝑘𝐿. The 

normalized terms 𝑐𝑜𝜒
𝑒/𝑘0𝐿 and 𝑐𝑜𝜒

𝑜/𝑘0𝐿𝑘𝐿 are zero-centered 

and comparable for different unit cell designs. In addition to the 

coupling, the impedance ratio between the composite and 

water, 
𝑅𝑒(𝑍𝑒𝑓𝑓)

𝑍0
,  is measured, along with the effective 

normalized wavenumber of the composite, 𝑘𝐿. All important 

parameters are collected in Table 1. Note that frequency is 

typically an exogenous factor, but since we are interested in 

designing composites to perform in specific frequency ranges, 

it is considered a design variable by way of the normalized 

wavenumber. 

A FEA was established to simulate the non-reciprocal 

response of individual unit cells. Figure 7 shows the unit cell 

geometry used for simulation. Simulation results are post-

processed to perform dynamic homogenization and yield 

effective macroscopic parameters of the composite including 

density, compressibility, and even and odd coupling terms. The 

full homogenization procedure is too extensive to describe here.  

Interested readers may refer to Sieck, Alu, and Haberman 

(Sieck, Alù, & Haberman, 2017) for a detailed description.  
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Table 1: Key terms for use in design of 1D Willis material. A 6D 

design space and 4 important performance indicators are shown. 

Design Variables Performance Indicators 

Density of 

Layer 1  
𝜌1 

Normalized 

Even Coupling 
𝑐𝑜𝜒

𝑒/𝑘0𝐿 

Density of 

Layer 2 
𝜌2 

Normalized 

Odd Coupling 
𝑐𝑜𝜒

𝑜/𝑘0𝐿𝑘𝐿 

Sound Speed 

in Layer 1 
𝑐1 

Ratio of 

Effective 

Impedance to 

Background 

Impedance 

𝑅𝑒(𝑍𝑒𝑓𝑓)

𝑍0

 
Sound Speed 

in Layer 2 
𝑐2 

Normalized 

Wavenumber 

in the Fluid 
𝑘0𝐿 =

2𝜋𝑓𝐿

𝑐0

 

Effective 

Normalized 

Wavenumber 
𝑘𝐿 

Volume 

Fraction of 

Inhom. 
𝑉𝐹 =  

𝑙

𝐿
   

 

 

Sampling was restricted to consider 324 possible 

combinations of 18 common materials (i.e. steel, rubber, glass, 

lead, etc.) of varying properties but equal layer thickness in a 

background of liquid water. A Hammersley sequence was used 

to uniformly sample 𝑉𝐹 ∈ (0.1, 0.35) at 5 points and 𝑓 ∈
[500𝐻𝑧, 50,000𝐻𝑧] at 100 points in increments of 500 Hz. 

The authors of the Willis coupling paper suggested starting with 

these intervals for 𝑉𝐹 and  𝑓 to find useful results [40]. With 

these sampling increments, the data set includes 162,000 

samples.  

 
Figure 7: Simulation geometry of 2 layer inhomogeneity in 

background fluid 

To meet performance constraints, the effective impedance 

of the composite was constrained to 80%-120% that of water, 

and the effective wavenumber was constrained to be less than 

𝜋, which is considered the upper limit for the dynamic 

homogenization scheme to produce valid results. After 

removing all samples violating these constraints, the data set 

contained 6,750 samples in a 6D design space and was prepared 

for classification using KBNs. A reasonable coupling 

performance threshold was selected to distinguish between 

high- and low-performance classes. By classifying any sample 

Figure 8: All sample points used for the demonstration problem scattered in a design space reduced to 3D 

by consolidating the material properties into a difference of characteristic acoustic impedances (𝒁𝟏 − 𝒁𝟐). 

All points in this set have effective impedances within 80%-120% of water and effective wavenumbers less 

than 𝝅. The color map represents normalized even coupling values, with absolute values greater than 0.02 

indicating high-performance. 
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with |𝑐𝑜𝜒
𝑒/𝑘0𝐿| > 0.02 as high-performance, 737 of the 6750 

samples were classified as high-performance and 6013 samples 

as low-performance. For a visualization of the 6D design space, 

the material properties were combined by calculating the 

difference in characteristic acoustic impedance between the 2 

layers of the inhomogeneity 𝑍1 − 𝑍2 = 𝜌1𝑐1 − 𝜌2𝑐2. Figure 8 

shows this reduced design space in a 3D scatter plot with a 

color map indicating normalized even coupling, 𝑐𝑜𝜒
𝑒/𝑘0𝐿.  

Figure 9 shows some examples of the normalized even 

coupling response to changes in the normalized wave number, 

𝑘0𝐿, for unique material combinations. The relationships are a 

subset of those eventually used for synthetic sample generation 

in the synthetically enhanced KBN model.  

  

 
Figure 9: Normalized even coupling values as a function of 

normalized wave number, for 15 unique combinations of materials 

at a volume fraction of 17%. All responses have effective 

wavenumber less than 𝝅 and effective impedance within 80%-

120% of water. 

The material properties 𝜌 and 𝑐 were considered to be 

discrete when sampling since they belong to distinct material 

choices, but they were treated as continuous design variables to 

generate KDEs since the problem was motivated by 

metamaterials that enable design for material properties on a 

continuous scale. Finally, this data set was used to train and 

cross-validate a naïve Bayes classifier both with and without 

using the PCD informed SMOTE method presented in this 

work. 

The base KBN with a Gaussian prior was tuned by many 

iterations of cross-validation with a standard deviation 

formulated as  

 

 

 

 

 

 
𝜎𝑖,𝑙 =

α𝜎̂𝑖,𝑙

𝑁𝑙
1/𝐷

 (11) 

where 

 

𝜎𝑖,𝑙: kernel width parameter (Eqn. 3) 

𝛼   : heuristic scalar 

𝜎̂𝑖,𝑙: st. dev. of design var. 𝑖 for designs  

        belonging to class 𝑙 
𝑁𝑙 : number of samples in class 𝑙 
𝐷  : number of design vars. (dimensions) 

 

The base KBN model showed the best performance with very 

thin kernels (e.g. at 𝛼 = 0.01). Table 2 below summarizes the 

performance of the base model.  Regardless of the value of α, 

the TPR never rose above about 38%, indicating poor KBN 

performance in the high-performance design space.  

 
Table 2: Results of tuning the base KBN model by cross-validation 

with varying heuristic 𝜶. The highlighted entries in Table 2 match 

the  𝜶 settings that dominate for the synthetically enhanced model. 

𝛼 TPR FPR ACC 

0.001 0.379 0.011 0.922 

0.010 0.381 0.011 0.923 

0.064 0.349 0.014 0.916 

0.119 0.206 0.013 0.902 

0.173 0.119 0.011 0.894 

0.228 0.071 0.011 0.889 

0.282 0.035 0.010 0.885 

0.337 0.020 0.010 0.884 

0.391 0.008 0.008 0.884 

0.446 0.001 0.008 0.884 

0.500 0.003 0.007 0.885 

 

The synthetically enhanced model was tuned and 

compared against the base KBN model by using an identical set 

of test data and with synthetic points added only to the training 

set. Tuned hyperparameters were: 𝛼, the PCD interval, and the 

quantity of interpolated points added between real samples. 

Synthetic points were generated by linearly interpolating along 

the curves shown in Figure 9 exactly as shown in Figure 4b.  

Together, Figure 10 and Table 3 below show the results of 

tuning with 240 combinations of hyperparameters:  

𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝐿𝑎𝑦𝑒𝑟𝑠: [3, 4, 5, 6, 7, 8, 9, 10, 11, 12],  
𝑃𝐶𝐷𝑢𝑝𝑝𝑒𝑟: [0.1, 0.2, 0.5, 0.6, 0.8, 0.9, 0.95,0.99](zero-centered), 

and 𝛼 = [0.391, 0.446, 0.500]. The number of interpolation 

layers indicates the number of synthetic points between each 

pair of basis points.  Early tuning showed the three 𝛼 values 

included in the 240 combinations yielded the best classifier 

performance and were focused upon thereafter. 
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Figure 10: Performance results of tuning the synthetically 

enhanced model for the acoustic bianisotropy problem. 

Figure 10 shows the achievable trade-off between FPR and 

TPR graphically for all 240 combinations while Table 3 shows 

the performance of 10 synthetically enhanced models with high 

TPR and the lowest associated FPR. It is clear that FPR rises 

sharply for models achieving a TPR greater than 70%. In this 

case, the best models are considered to be those nearest the 

bottom-right corner of Figure 10. 

 
Table 3: Ten best results from tuning synthetic model sorted by 

TPR. 

Interpolation 

Layers 

PCD 

Interval 
𝛼 TPR FPR ACC 

6 0.99 0.500 0.624 0.059 0.907 

6 0.99 0.446 0.638 0.060 0.907 

7 0.99 0.391 0.665 0.076 0.895 

7 0.99 0.500 0.674 0.072 0.900 

7 0.99 0.446 0.678 0.076 0.897 

8 0.99 0.500 0.708 0.097 0.881 

8 0.99 0.446 0.708 0.099 0.880 

9 0.99 0.391 0.731 0.127 0.858 

9 0.99 0.446 0.733 0.129 0.856 

10 0.99 0.391 0.753 0.156 0.834 

 

Increasing FPR is an undesirable result that comes along 

with expanding the high-performance regions of the design 

space mapping but is somewhat unavoidable. The ACC is 

slightly lower for the synthetically enhanced models than the 

best base model, which means that more false positives have 

been introduced than false negatives have been removed. 

However, in the interest of improving an imbalanced classifier 

the vast improvement in TPR outweighs the ACC reduction. 

With a higher TPR rate, this classifier is now much more useful 

for exploring a design space. Note that the large PCD intervals 

work well for this problem. This is likely a result of the simple 

relationship between the continuous variable and the 

performance metric and the resulting quality of the 

interpolation. In a design space in which the relationship is 

highly non-linear and multimodal, a thinner PCD interval may 

be necessary. Overall the performance of this classifier has been 

improved noticeably by adding synthetic points around the 

decision boundaries. 

For this problem, a validation step compared the 

interpolated performance of the synthetic points to the results of 

the FEA. Plots of 𝑐𝑜𝜒
𝑒/𝑘0𝐿 vs. 𝑘0𝐿  showed mostly smooth 

functional relationships that were suitable for linear 

interpolation, but to be thorough, we evaluated 2811 synthetic 

design points. Simple but representative hyperparameters were 

chosen: 𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝐿𝑎𝑦𝑒𝑟𝑠 = 1, 𝑃𝐶𝐷 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = [−1, 1], 
and 𝛼 = 0.5, along with a performance threshold of  |𝑐𝑜𝜒

𝑒/
𝑘0𝐿| > 0.02. The mean squared error between the interpolated 

and simulated 𝑐𝑜𝜒
𝑒/𝑘0𝐿  values of the synthetic points was 

7.4𝑥10−6. This low error rate demonstrated that the 

interpolated performance values were very close to the result 

we would have gotten by incurring the computational expense 

to simulate them all. In this case, it required about 3.5 minutes 

to simulate each design point, so simulating all 2811 points 

required almost 170 minutes on a PC with an Intel i5 processor 

and 16 GB of RAM. For comparison, generating the synthetic 

points on the same machine takes just a few seconds. 

Despite the very challenging nature of the design space, 

adding synthetic minority class samples to the training sets 

improved the classifier’s performance by increasing TPR at a 

significantly greater rate than the FPR when heuristics were 

well tuned. An ideal synthetic oversampling would not increase 

FPR at all, but since the synthetic points are enlarging the high-

performance regions of the design map, it is expected that some 

low-performance designs will lie in those regions and be 

misclassified during the cross-validation.  

 

CONCLUSIONS AND FUTURE WORK 
In this paper, a method is introduced to utilize posterior 

probabilities of class membership to generate synthetic points 

of the minority class and rebalance an imbalanced classification 

problem with mixed discrete/continuous variables. The method 

works by identifying reduced sets of basis points near the 

decision boundaries that partition high-performance regions of 

the design space and interpolating continuous design variables 

with discrete design variables held constant. Interpolated points 

that belong to the minority (high-performance) class are added 

to the overall training set in an attempt to artificially balance 

the classifier’s KDEs. This method provides an advantage in 

design exploration by saving the computational expense of 

evaluating additional candidate designs when working in a 

sparse design space with mixed variable types.  

One obvious opportunity to expand this work is to apply 

the method to additional problems and fully benchmark it 

against other approaches to the same type of problems. Another 

opportunity is to study the relationship between the PCD 

bounds and design space characteristics like sparsity on the 

synthetic generation process. It would also be worth 

considering more sophisticated interpolation techniques for 
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generating and evaluating synthetic training points. For 

example, prior knowledge of the response or transfer learning 

from similar problems could be incorporated to add realistic 

synthetic points in areas of the space with little definition. 

In general, validating the classified performance of 

synthetic points is of great interest for improving the accuracy 

of the enhanced classifier, but it must be done in a cost-

effective way. There is potential for developing an algorithmic 

scheme to validate a subset of the synthetic points to ensure that 

they are not misclassified. For example, a sampling scheme 

could be used to start evaluating synthetic points with 

expensive simulation models, followed by an expected 

improvement framework to determine which synthetic points 

are most valuable to evaluate with an underlying simulation 

model.  In this way, PCD informed SMOTE would take the 

form of an adaptive sampling technique. 
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